

American Water Work

Stanton Smith

Crosstek Membrane Technologies, LLC

Introduction and Acknowledgements

• Pilot and Project team:

2022 Iembrane

- NextEra/Sustainable Water: Eric Lohan and contract team
- Crosstek: AbdurRehman Rashid, Hunter Obenschain, Job Omweno, Julian Arroyo
- Site/Operations teams: Utility Partners and Owner staff

Reuse Process Block Flow Diagram

Original MBR Plant Design

- 2 x 50% Membrane Basins
- Total Basin vol. = 181,000 gallons
- HRT (An,Ae) > 2 days

- Original MBR seeded mid-2020, with regular MBR operation beginning September 2020
- Used submerged PVDF hollow fiber membranes
- MBR Design Flux ≤ 5 GFD
- Air scour, relaxation and CEB as cleaning methods
- RAS = 6Q RAS. MLSS = 8,000 mg/l (Membrane tank)
- MBR effluent @ RO quality: SDI < 3, BOD < 5; NTU < 1

Operational Challenges

- 4 months into operation, MBR started fouling rapidly
- Fats, oils and greases (FOGs) from canteen, and total petroleum hydrocarbons (TPHs) from industrial WW, each were > 100 mg/l in membrane tanks

Historical Feed values								
MBR	Tank I	MB						
FOG	TPH	FOG	ТРН	Date:				
110	61	106	52	11/10/2020				
190	139	103	58	11/11/2020				
343	235	168	107	12/2/2020				
119	74	56	51	12/15/2020				
130	77	170	121	12/29/2020				
194	119	155	96	1/6/2021				
323	191	212	145	2/4/2021				
273		219	135	2/17/2021				
237	122	592	363	2/25/2021				
213.2	127.3	197.9	125.3	Average				
343	235	592	363	Highest				
110	61	56	51	Lowest				
81.9	56.6	148.0	90.4	Std Dev				

Operational Challenges Continued

• MBR became unreliable and operationally intensive:

lembrane

- frequent production
 downtime for cleanings
- cumbersome cleaning:
 draining / lifting membranes
 out / soap wash
- Not meeting wastewater reuse flow rate goals

Membrane offline cleaning. Operations and HSE did not want this in future

Potential Permanent Solution: Submerged Ceramic Membranes

Challenge	Solution
Ceramic membranes used in oil	Crossflow for submerged membranes
emulsion splitting due to hydrophilicity	can be introduced by aggressive air
BUT operate in crossflow mode	scour operation
Project had residual COD > 200 mg/l	Silicon carbide ceramic membranes
which could foul alumina ceramics,	have higher hydrophilicity than alumina
coating hydrophilicity that could lead to	(contact angle ~10° less) and preferred
oil emulsion coating and fouling	negative surface charge repels organics

Pilot Trial (.....fool me twice.....)

- 2-month long pilot trial was planned with full-size silicon carbide (SiC) ceramic microfiltration (MF) membrane
- Feed from existing site bioreactor and operating at the same MLSS and RAS rate, but using aeration and cleaning equipment provided with SiC MF pilot plant
- Trial focused on:
 - Maximum re-purposing 1-year old hollow fiber MBR components
 - Proving process reliability

Pilot Trial Preparation

- Key equipment studied for re-purposing:
 - Bio: as is for MLSS, HRT, F:M, coag, DO
 - Air scour blower: underpowered. <u>Motor upsized and re-sheaved</u> for ceramic max 'crossflow'. Hence eliminated air scour rate as pilot study parameter. <u>New diffusers added</u>
 - Permeate pump: <u>as is</u> ceramic permeability was higher and pump had full capability for BW / CEB / production and slightly sub-optimized for spray down (rare CIP event)
 - Membrane basins: <u>as is</u>. Ample space. <u>Flow path re-directed</u> to match ceramic membrane geometry

Pilot Trial Preparation (cont'd)

- Key equipment studied for re-purposing:
 - PLC / HMI: <u>as is</u>, similar production / BW / CEB / air scour features, just setpoint changes. <u>Added spray down option</u>
 - Remote PLC/data management: as is
 - Accessibility: as is. Crane remove old and install new membranes
 - RAS: as is. Slightly undersized at peak flow, but above 4Q
 - Piping: <u>as is</u>. Similar flow rates and acceptable line loss

Pilot Test Plan

- With equipment re-purposing design incorporated, the remaining focus of pilot trial was process reliability aspects:
 - Membrane life: five+ year life desired. Difficult to measure in short term pilot but used observation combined with supplier experience
 - Flux stability / permeability at required project normal and peak production rate, assessed at practical cleaning regime:
 - Avoid lifting membranes from basins
 - Use only HSE-approved cleaning methods/chemicals
 - Use constant 'max' constant air scour rate
 - Study period was minimum one month to observe production variations
 - Measure fouling rate for range of flux values to set normal and peak flux

Pilot Plant

Pilot setup

Pilot Results 1: Membrane Lifetime

- Ceramic material lifetime expected > 5 years by experience
- Studied plastic/elastomer/adhesive components in pilot for attack by TPH, but no visual attack or softening observed
- No problems in 3 months of run time

Pilot Results 2: Determine Normal Flux

Time MM/DD/YYY hh:mm

7 Some event happened around 3/5/2021 5:00 PM

Pilot Results 3a: Determine Peak Flux I

2022 Membrane Technology

Peak Flux Stress test I

-Pressure PSI -Flux GFD

Pilot Results 3b: Determine Peak Flux II

2022 Membrane Technology

Peak Flux Stress test II

---- Pressure PSI ---- Flux GFD

Pilot Results 4: Robustness – Feed Loss Event

Pilot Results 5: Trial Summary and Analytical

Stream	TSS mg/l	BOD mg/l	COD mg/l	Ammonia mg/l	Iron mg/l	T Phos mg/l	Manganese mg/l	
Pilot	<1	<2	176	0.24	0.983	0.871	0.762	
Existing	<1	2.8	180	0.34	1.15	0.865	0.79	

Stream	Conductivity uS	Turbidity NTU	ORP mV	рН	Temperature F	SDI
Pilot	1072	0.12-0.44	167	6.7-7.3	70	0.7-2.0

Trial #	Run time	Flux (GFD)	CEB (type)	TMP (recovery)
1	14 hours	20	Bleach	99%
2	10 hours	20	Bleach	99%
3	21 days	11.5	Bleach-Acid	99%
4	6 days	17-13	Bleach-Acid	99%
5	2 days	17-15	Bleach-Acid-Caustic	99%
6	40 hours	20	Bleach-Acid-Caustic	99%

Commercial System Design

Design Parameter*	Value				
RAS rate	6Q (average); 4Q minimum				
Aeration rate per tower (+/-10%)	30 SCFM / 50 Nm3/hr				
Backwash flux	1 to 2X versus production flux				
Backwash frequency	> 8 min production time				
Chemical cleaning frequency	Estimated 1 per week				
Cleaning chemicals, nominal concentration	NaOCl 0.2 to 0.5wt%				
	Citric acid 1 to 2wt%				
	Hydrex / Opticlean B 1wt% pH 11.5-12				
Number of towers per train / no. trains	4 / 2				
Ave / Peak Permeate Flux (Filtrate)	8.4 / 14.5 GFD				
Number of modules per tower	10				
MLSS (membrane tank / RAS)	6,000 - 12,000 mg/l				
TPH (membrane tank / RAS)	61 – 235 mg/l				
FOG (membrane tank / RAS)	56 – 592 mg/l				

Basin configuration			Peak Design Flow				Average Design Flow			
Towers per Tank	Modules per Tower	Total Modules	GPD	GPM	GFD	CEB Interval (d)	GPD	GPM	GFD	CEB Interval (d)
4	8	64	74,880	52	18.1	1	43,200	30	10.5	14
4	9	72	74,880	52	16.1	5	43,200	30	9.3	21
4	10	80	74,880	52	14.5	7	43,200	30	8.4	30
4	11	88	74,880	52	13.2	10	43,200	30	7.6	30

Commercial System Installation

Removed fibers

Commercial Operation: Successful

Closing comments

- Emulsified oils are challenging for hollow fiber MBRs leading to excessive fouling and labor-intensive cleaning
- Silicon carbide ceramic membranes were selected, and a successful pilot trial was performed meeting design goals
- Retrofit required 3 days downtime and repurposed all process equipment and PLC/HMI code
- Ceramic: 3x Flux, 3x Permeability, 9x less cleaning
- Question: is this better than a 2-step process: (1) enhanced de-oiling (2) hollow fiber MBR?

Thank you. Any questions?

CROSSTEK

stanton.smith@crosstek.com 617.460.9433

Get in touch!

Q

900 Technology Park Drive, Suite 100, Billerica MA 01821

+1 (781) 658-3340

Monday to Friday | 9am – 5pm